Трёхфазный асинхронный электродвигатель: принцип работы, преимущества и недостатки

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

Асинхронный электродвигатель – преимущества и недостатки

Основными потребителями мировой электроэнергии (более 60% – 65%) являются электромеханические системы – электроприводы, работающие в различных промышленных, транспортных и бытовых механизмах и агрегатах. Асинхронный двигатель является наиболее широко применяемым среди всех типов электродвигателей. Двигатели специальной конструкции, построенные на базе асинхронного двигателя, характеризуются техническими параметрами, влияющими на их рабочие характеристики и адаптирующими их к различным требованиям и назначениям. Среди асинхронных двигателей специальной конструкции можно выделить следующие: многоскоростные двигатели – частота вращения двигателя изменяется изменением количества пар полюсов вращающегося магнитного поля; двигатели с короткозамкнутым ротором с повышенным пусковым моментом – используются для привода устройств с большим моментом инерции; моторы крановые – адаптированы к различным видам работ, используются для привода кранов и других подъемных устройств; двигатели с тормозом – используются в приводах, требующих быстрой остановки после рабочего цикла или после аварийного отключения питания; двигатели с повышенным скольжением – используются для привода механизмов с большой инерционностью, а также механизмов, работающих в повторно-кратковременном режиме; взрывозащищенные двигатели и т.д.

В бытовых электроприборах применяются однофазные электродвигатели с рабочим напряжением 220 вольт. Очень часто таким двигателем является однофазный асинхронный двигатель с короткозамкнутым ротором.

Принцип работы

Заключается в формировании электромагнитного поля вокруг проводника, по которому протекает электрический ток. Для асинхронного электродвигателя данный процесс начинается сразу после подачи напряжения на обмотки статора, после чего в роторе наводится ЭДС взаимоиндукции, индуцирующей вихревые токи в металлическом каркасе. Наличие вихревых токов обуславливает генерацию собственной ЭДС, которая формирует электромагнитное поле ротора. Наиболее эффективный КПД асинхронной электрической машины получается при работе от трехфазной сети.

Конструктивно обмотки статора имеют смещение в пространстве друг относительно друга на 120°, что показано на рисунке 2 ниже:

Геометрическое смещение фаз в статоре

Рис. 2. Геометрическое смещение фаз в статоре

Такой прием позволяет отстроить магнитное поле рабочих обмоток в строгом соответствии с напряжением трехфазной сети, которое имеет аналогичную разность кривых электрической величины.

Принцип формирования магнитного потока асинхронного двигателя

Рис. 3. Принцип формирования магнитного потока асинхронного двигателя

На рисунке 3 выше все три фазы изображены в разных цветах для упрощения понимания процесса, также здесь изображена кривая токов, протекающих в фазах асинхронного электродвигателя. Теперь рассмотрим физические процессы в обмотках двигателя для трех позиций показанных на рисунке:

  • I – в этой позиции максимальный ток протекает в красной обмотке электродвигателя, а значение силы тока в желтой и синей равны. Основной поток силовых линий формируется красной фазой, а два других дополняют его.
  • II – в данной точке желтая синусоида равна нулю, поэтому никакого потока не создает, а сила тока красной и синей равны. Поток формируется сразу двумя фазами и смещается по часовой стрелке вправо, совершая поворот.
  • III – третья точка характеризуется максимумом токовой нагрузки для синей кривой, а красная и желтая имеет равную амплитуду, но противоположную по направлению. В результате чего максимум магнитных линий южного и северного полюса сместиться еще на 30°.

По данному принципу магнитное поле статора вращается в асинхронной электрической машине в течении периода. За счет магнитного взаимодействия с полем статора асинхронного электродвигателя происходит поступательное движение ротора вокруг своей оси. Можно сказать, что ротор пытается догнать поле статора. Именно за счет разницы во вращении полей данный тип электрической машины получил название асинхронной.

Трехфазный асинхронный двигатель: все самое главное, что нужно знать

В электротехнике асинхронный двигатель является вращающейся электрической машиной для переменного тока.

Асинхронный двигатель использует вращающееся магнитное поле, генерируемое в статоре, для создания крутящего момента, чтобы вызвать электрический ток в роторе (передача энергии за счет электромагнитной индукции), и поэтому он должен иметь скорость немного ниже (выше для асинхронного генератора), чем скорость вращающегося магнитного поля (так называемое скольжение).

Читайте также:
Топиарий из салфеток своими руками

Большая разница по сравнению с двигателями постоянного тока и синхронными двигателями заключается в том, что на ротор не подается ток, а переменный ток проходит только через обмотку статора.

Трехфазный асинхронный двигатель – самый распространенный электродвигатель в мире, потому что он простой, экономичный, не требует обслуживания, вращается без дополнительных вспомогательных средств (в варианте с короткозамкнутым ротором во время его работы не возникает искр, поэтому он подходит для взрывоопасных сред, таких как шахты, газовые приборы и т. д.).

Трехфазный асинхронный двигатель

Однофазные варианты используются для более низких мощностей. Хотя они традиционно используются для работы на постоянной скорости, в настоящее время они используются с частотными преобразователями на разных скоростях (обычно для экономии электроэнергии).

Благодаря простой конструкции, прочности и возможности неискрящей конструкции, этот тип двигателя является наиболее распространенным на практике, он используется во многих областях промышленности, транспорта и домашнего хозяйства. Мощность асинхронных двигателей колеблется от нескольких ватт до многих сотен киловатт.

Два наиболее распространенных типа асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором.

Первые асинхронные двигатели были построены независимо несколькими изобретателями:

В 1887 году Никола Тесла подал патент на асинхронную машину, 5 мая следующего года – еще пять патентов.

В то же время Галилео Феррарис опубликовал трактат о вращающихся машинах.

В 1889 году Михаил Осипович Доливо-Добровольский изобрел первый трехфазный асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель General Electric, 25 лошадиных сил, 60 гц, 220 вольт, 70 ампер, 1911 год

Асинхронный двигатель General Electric, 25 лошадиных сил, 60 гц, 220 вольт, 70 ампер, 1911 год

Устройство

Каждый трехфазный асинхронный двигатель состоит из двух основных частей.

Статор (неподвижная часть) – аналогичен для большинства типов. Он состоит из опорной рамы двигателя, подшипниковых щитов, фланца, ножек, набора пластин статора с вставленной в пазы обмотки статора.

Ротор (вращающаяся часть) – вал с запрессованными роторными (электротехническими) листами с пазами, в которые вставляются стержни обоймы ротора или проводники обмотки ротора. В пазы ротора вставляются голые медные, латунные или алюминиевые стержни, которые с обоих концов соединены короткозамыкающим кольцом.

Стержни с кольцами в виде «беличьей клетки». Клетка сваривается или отливается методом литья под давлением алюминия.

Кольцевой якорь в двигателе с фазным ротором – в пазы листов помещается обмотка ротора из изолированных проводов, которая соединяется звездой или треугольником. Обмотка ротора соединена с тремя кольцами. На кольца опираются три кольца угольных щеток, к которым может быть подключена цепь регулирующего ротора, чаще всего резисторы.

Конструкция трехфазного асинхронного двигателя

Конструкция трехфазного асинхронного двигателя

Обмотки статора трехфазного асинхронного двигателя

Обмотки статора трехфазного асинхронного двигателя

Принцип работы

В основе работы асинхронной машины лежит создание вращающегося магнитного поля статора, которое создается за счет прохождения переменного трехфазного тока через обмотку статора.

Это магнитное поле индуцирует напряжение в обмотке ротора, а ток, генерируемый обмоткой ротора, индуцирует магнитный поток, который передается на статор. Связанный магнитный поток вызывает силу, действующую на ротор, и, следовательно, вращение ротора.

Скорость вращающегося поля статора, то есть синхронная скорость, определяется частотой напряжения питания и числом полюсов двигателя:

Скорость вращающегося поля статора

f – это текущая частота и p – количество пар полюсов (т.е. p : 1 = двухполюсный, 2 = четырехполюсный, 3 = шестиполюсный, 4 = восьмиполюсный и т. д.).

Скольжение

Асинхронная машина может прикладывать крутящий момент к выходному валу только в том случае, если скорость вращения магнитного поля статора отличается от механической скорости ротора из-за так называемого скольжения.

При ненулевом скольжении магнитный поток статора, связанный с потоком ротора, движется относительно ротора, переменный (переменный) связанный магнитный поток статора и ротора протекает через ротор, в обмотке ротора индуцируется напряжение, ток ротора потоков, роторная часть связанного магнитного потока машины отлична от нуля и крутящего момента.

Частота обмотки статора определяется частотой сети. Частота магнитного потока ротора и обмотки ротора отлична от нуля, определяется скольжением и отличается от частоты обмотки статора. Скольжение указывается в процентах и ​​определяется как:

Читайте также:
Что можно сделать из остатков обоев своими руками?

Скольжение

где, ns – «синхронная» скорость магнитного поля статора, n – механическая скорость ротора.

Номинальная скорость двигателя – это скорость, включая номинальное скольжение двигателя (оба значения указаны на паспортной табличке двигателя).

При нулевом скольжении, то есть при синхронной скорости машины, связанный магнитный поток статора и ротора не перемещается относительно ротора. Напряжение в обмотке ротора не индуцируется, ток ротора не течет, и крутящий момент не создается.

Крутящий момент

Крутящий момент обычного асинхронного двигателя с короткозамкнутым ротром задается в установившемся состоянии так называемым соотношением Клосса. Устойчивое состояние возникает после исчезновения переходных процессов, вызванных быстрыми изменениями нагрузки или источника питания машины.

Крутящий момент

Где, М max – максимальный крутящий момент (не путать с номинальным) и S z – скольжение при максимальном крутящем моменте .

Максимальный крутящий момент асинхронной машины пропорционален квадрату напряжения питания.

Пуск

При пуске асинхронного двигателя с короткозамкнутым ротором пусковой ток до 7 раз превышает значение номинального тока. Это создает большие скачки тока в сети при относительно небольшом крутящем моменте включения, поэтому прямой пуск обычно применяется только для двигателей мощностью около 3 кВт.

Уменьшение большого пускового тока асинхронного двигателя может быть достигнуто за счет уменьшения пускового напряжения статора.

Полупроводниковый регулятор напряжения (устройство плавного пуска двигателя) – это полупроводниковый регулятор напряжения двигателя с низкими потерями, при котором может быть достигнут плавный пуск двигателя.

Устройство плавного пуска не изменяет скорость двигателя, оно изменяет скольжение двигателя. Устройство плавного пуска также может использоваться для управления скоростью вентилятора и аналогичных нагрузок с квадратичной зависимостью мощности от скорости.

Двигатель каменной мельницы на золотом руднике Санрайз Дам

Двигатель каменной мельницы на золотом руднике Санрайз Дам (в Западной Австралии). Это асинхронный двигатель Alstom 11000 В – 4000 кВт, произведенный в Нанси (Франция).

Двигатели с фазным ротором

Пускатель ротора подключается к кольцам ротора с помощью щеток, обычно состоящих из трех резисторов одинакового размера, которые постепенно устраняются. В конце пуска обмотка замыкается накоротко.

Кольцевой якорь в двигателе с фазным ротром предназначен для ограничения пусковых токов статора, а также для увеличения пускового момента при пуске. Такой способ пуска двигателя не изменяет его скорость, он изменяет скольжение двигателя.

Реверс

При изменении любых двух фазных проводов на клеммах двигателя изменяется направление вращения вращающегося поля, и двигатель вращается в противоположную сторону.

Управление скоростью вращения

Скорость ротора

где, S – скольжение, f – частота питающего напряжения , p – количество пар полюсов двигателя. Следовательно, мы можем регулировать скорость, изменяя любую из этих величин.

Регулирование путем изменения напряжения питания – основано на крутизне характеристики крутящего момента в зависимости от изменения напряжения на выводах двигателя с последующим изменением скольжения для заданного крутящего момента, т.е. путем смещения рабочей точки. Это выполняется переключением обмотки статора по схеме звезда / треугольник или добавлением полного сопротивления к питанию статора, автотрансформатору и т.п.

Самый популярный способ управления скоростью вращения асинхронных двигателей с короткозамкнутым ротором в настоящее время – изменения частоты питающей сети.

Подключив частотный преобразователь (инвертор), можно контролировать частоту и эффективное значение выходного напряжения и, следовательно, генерируемое магнитное поле статора.

Скорость синхронного двигателя соответствует выходной частоте инвертора. Выходная частота инвертора может быть ниже, равна или выше частоты сети.

Электродвигатели с частотным преобразователем

Двигатель, приводимый в действие преобразователем частоты, в этом случае имеет скорость, отличную от скорости двигателя при прямом питании от сети, даже более высокой.

Скалярное управление – постоянное – можно установить номинальную величину магнитного потока. Он в основном регулирует выходную частоту и напряжение в соотношении U/f = const. Применяется для двигателей с низкими требованиями к динамическим свойствам (насосы, вентиляторы). Скалярное управление не может использоваться для управления двигателем в диапазоне близком к нулевой скорости.

Векторное управление – помимо величины магнитного потока, можно задать его направление и, таким образом, добиться плавного изменения скорости при любом режиме работы и нагрузки. Это лучший способ контролировать скорость. Векторное управление позволяет создавать крутящий момент даже в области нулевой скорости. Старые реализации векторного управления требовали датчика скорости, сегодня уже используются методы бессенсорной идентификации состояния машины.

Читайте также:
Чистка матраса народными средствами: убираем пятна и запахи

Прямое управление крутящим моментом (DTC) – это также усовершенствованный метод управления, который не обеспечивает полную динамику на низких или нулевых скоростях. Преимущество этого способа состоит в том, что алгоритм управления прост, непосредственно генерирует состояние переключения транзисторов и не требует наличия датчика скорости или идентификации состояния машины.

Однофазные асинхронные двигатели

Однофазный асинхронный двигатель чаще всего используется там, где нет необходимости регулировать скорость двигателя во время работы машины, например, при приводе компрессоров в холодильниках, бытовых стиральных машинах, газонокосилках и вентиляторах.

Для регулирования скорости однофазных асинхронных двигателей можно использовать частотный преобразоваетль с питанием от однофазной сети переменного тока.

В обычных бытовых приборах, таких как электрические ручные инструменты, кухонные комбайны, пылесосы, фены, по-прежнему применяются коллекторные двигатели, которые имеют более высокую скорость вращения и, следовательно, меньший объем и вес для требуемой мощности. Серийное производство более сложных и требовательных к обслуживанию коллекторных универсальных двигателей хорошо управляемо и автоматизировано.

Трехфазные асинхронные двигатели в производственном цеху

Трехфазные асинхронные двигатели в производственном цеху

Асинхронный двигатель как генератор

Трехфазный асинхронный двигатель может использоваться без доработок в качестве электрогенератора для производства электроэнергии. Благодаря своей простоте и необслуживаемой эксплуатации, он используется в качестве генератора, особенно на малых гидроэлектростанциях.

Скорость водяной турбины (или другого источника вращающейся энергии) должна быть изменена путем преобразования в сверхсинхронную скорость используемого асинхронного двигателя, то есть скольжением выше синхронного. Эта сверхсинхронная скорость затем поддерживается внешней электрической сетью.

Подачу воды в турбину необходимо регулировать так, чтобы частота вращения синхронного двигателя не уменьшалась и, как правило, не превышалась частота вращения синхронного двигателя в 1,5 раза. Когда скорость падает, двигатель переключается с рекуперативного на двигательный режим и начинает получать активную энергию из сети. Превышение скорости может привести к перегрузке в рекуперативном режиме и механической аварии.

Работа двигателя в качестве генератора вне оптимального диапазона скоростей снизит эффективность. Предпочтительно использовать многополюсные двигатели с более низкими рабочими скоростями (например, 1500 мин -1 ).

Гидравлические турбины обычно проектируются тихоходными. Необходимо быстро вставить коробку передач между турбиной и двигателем. Однако это означает более высокие механические потери мощности в коробке передач. При более низких номинальных оборотах двигателя существует риск проблем с охлаждением и, как следствие, перегрева и сокращения срока службы.

Запуск асинхронного двигателя в качестве генератора может выполняться оператором, который сначала подключает двигатель к трехфазной сети. При подключенной турбине двигатель вращается с номинальной скоростью, близкой к синхронной.

Затем оператор открывает затвор подачи воды в турбину. Двигатель начинает разгоняться до сверхсинхронной скорости. С этого момента двигатель подает электроэнергию в сеть, и внешняя сеть также определяет его скорость.

Отключение выполняется в обратном порядке, чтобы предотвратить опрокидывание и, как следствие, повреждение двигателя (турбина без нагрузки).

Например, если асинхронный двигатель имеет номинальную скорость 1430 мин -1 , это двигатель с двумя полупарами (шесть катушек, подключенных к трехфазной сети), его синхронная скорость составляет 1500 мин -1 , а скольжение равно 70 мин −1 (s = 6,7%). Такой двигатель будет оптимально работать как генератор на скорости 1500 + 70 = 1570 мин -1 (s = -6,7%).

Малая гидроэлектростанция

Для своей работы асинхронный двигатель с приводом от двигателя потребляет полную мощность [ВА] из распределительной сети, которую можно разделить на активную [Вт] и реактивную мощность [вар].

Полная, активная и реактивная мощность больше нуля (в используемой системе потребителей они имеют положительный знак). Активная мощность в двигателе преобразуется в механическую мощность на выходном валу и потери, то есть тепло. Реактивная мощность передается только между двигателем и источником (или компенсатором). Он не вырабатывает мощность и вызывает активные потери.

Читайте также:
Укладка ламината на неровный пол: пошаговая инструкция

Асинхронный двигатель в рекуперативном режиме потребляет механическую энергию от выходного вала приводной машины (турбины). Асинхронный двигатель в рекуперативном режиме подает полную мощность [ВА] в распределительную сеть. Он обеспечивает активную мощность [Вт] и потребляет реактивную мощность [вар]. Полная и активная мощность меньше нуля (в используемой системе потребителя они имеют отрицательный знак).

Реактивная мощность больше нуля и имеет положительный знак. Для работы асинхронного генератора требуется подключение к трехфазной сети.

Асинхронный двигатель не может работать независимо как асинхронный генератор (т.е. он не работает в случае отказа внешней распределительной сети). Помимо подачи реактивной мощности, распределительная сеть определяет частоту и, следовательно, скорость вращения асинхронного генератора.

Если механический источник энергии (турбина) не имеет подходящего ограничения максимальной скорости, необходимо отключить асинхронный генератор от турбины (или отсоединить турбину от источника воды) в случае отказа распределительной сети. В противном случае машина может перевернуться, рабочая скорость может быть превышена, и она может получить механическое повреждение.

Рекуперативный асинхронный двигатель в автономном режиме может работать в особых условиях. Асинхронный генератор получает механическую энергию от выходного вала приводной машины (турбины).

Электродвигатель в режиме генератора на малой гидроэлектростанции

В электрическом отношении асинхронный генератор работает изолированно от внешних систем.

Скорость вращения асинхронного генератора и, следовательно, частота выходного напряжения генератора могут колебаться в зависимости от нагрузки и расхода воды через турбину. Это зависит от взаимного баланса механической мощности генератора и электрической мощности генератора. В этом случае асинхронный генератор обычно подключается к автономной сети, например, через частотный преобразователь, который регулирует выходное напряжение и частоту системы.

Асинхронный генератор в автономной сети является источником полной мощности [ВА]. Он подает активную мощность [Вт] в автономную сеть.

Потребляемая реактивная намагничивающая мощность генератора [вар] и потребляемая реактивная мощность автономной сети [вар] должны подаваться, например, от батареи компенсирующих конденсаторов.

Автономная система с асинхронным генератором должна быть оборудована цепями управления и регулирования. Например, частотный преобразователь может использоваться для поддержания фиксированной частоты. В остальном асинхронный двигатель в рекуперативном режиме в автономном режиме ведет себя так же, как при подключении к распределительной сети.

Недостатки асинхронных двигателей

Скорость вращения ротора. Скорость вращения вала двигателя зависит от частоты питающей сети (стандартные значения в промышленности – 50 и 60 Гц) и от количества полюсов обмоток статора.

Это можно считать недостатком в том случае, когда необходимо в процессе работы менять скорость вращения. Для решения данной проблемы были разработаны многоскоростные асинхронные двигатели, у которых имеется возможность переключения обмоток.

Кроме того, в современном оборудовании управление скоростью реализуется за счет преобразователей частоты.

Скольжение. Эффект скольжения проявляется в том, что частота вращения ротора всегда будет меньше частоты вращения поля внутри статора. Это заложено в принцип работы асинхронного двигателя и отражено в его названии. Скольжение также зависит от механической нагрузки на валу.

При необходимости скольжение можно скомпенсировать, а скорость вращения сделать независимой от нагрузки при помощи преобразователя частоты.

Величина напряжения питания. В сырых и влажных помещениях, где действуют повышенные требования к электробезопасности, применение асинхронного электродвигателя может быть невозможным. Дело в том, что из-за конструктивных особенностей такие двигатели практически не производятся на напряжение питания менее 220 В. В таких случаях применяют приводы постоянного тока, рассчитанные на напряжение 48 В и менее, либо используют гидравлические или пневматические приводы.

Чувствительность к напряжению питания. При отклонении напряжения питания более чем на 5% параметры двигателя могут отличаться от номинальных, а сам агрегат может перегреваться. Кроме того, при понижении напряжения падает момент электродвигателя, который квадратически зависит от напряжения.

При использовании преобразователя частоты скорость вращения меняется путем изменения величины и частоты питающего напряжения. Принципиально, что отношение напряжения к частоте должно быть константой.

Пусковой ток. Большой пусковой ток – проблема асинхронных двигателей мощностью более 10 кВт. При пуске ток может превышать номинальный в 5-8 раз и длиться несколько секунд. Из-за этого негативного эффекта мощные двигатели нежелательно подключать напрямую.

Читайте также:
Строительство домов из СИП-панелей: преимущества, проекты, цены

Чаще всего для понижения пускового тока применяют схему «Звезда-Треугольник», устройства плавного пуска и преобразователи частоты. Также можно использовать асинхронные двигатели с фазным ротором.

Пусковой момент. В силу электрических и механических переходных процессов в момент пуска двигатель обладает крайне низким КПД и большой реактивностью. Из-за низкого пускового момента привод может не справиться с началом вращения тяжелых механизмов. Этот же недостаток приводит к нагреву двигателя при пуске. Отсюда возникает другая проблема – ограничение количества пусков в единицу времени.

При использовании частотного преобразователя момент при пуске и на низких частотах может быть увеличен за счет повышения напряжения.

Принцип работы трехфазного электродвигателя

Принцип работы электродвигателя довольно прост и основан на принципе вращающегося электромагнитного поля.

принцип работы электродвигателя

На рисунке выше представлен медный диск прикрепленный к валу на подшипнике напротив которого расположен постоянный магнит. Если начать вращать постоянный магнит то его магнитное поле пересекающее медный диск начнет так же вращаться, т.е. создастся вращающееся магнитное поле которое согласно закону электромагнитной индукции создают в медном диске токи индукции. Данные токи, протекая по диску, создают собственное электромагнитное поле, которое, в свою очередь, вступает во взаимодействие с вращающимся магнитным полем постоянных магнитов, что приводит к вращению диска.

Таким же образом работает и трехфазный электродвигатель, однако в нем вращающееся магнитное поле создается с помощью специального расположения обмоток статора, которые смещены в пространстве относительно друг друга на 120 о , такое расположение при протекании по ним трехфазного тока приводит к возникновению вращающегося электромагнитного поля.

Видео воздействия вращающегося электромагнитного поля статора на металлический контур (в качестве контура в данном случае выступает обычное лезвие):

Вращающееся магнитное поле статора воздействуя на обмотку ротора приводит к возникновению в ней индукционных токов, которые протекая через обмотку ротора создают собственное электромагнитное поле, взаимодействие этих полейприводит ротор во вращение.

Так же как и магнит статор электродвигателя имеет полюса, однако в отличие от постоянного магнита полюсов в электродвигателе может быть больше двух, при этом их всегда четное количество. Количество полюсов в статоре напрямую влияет на скорость вращения магнитного поля и соответственно на скорость вращения ротора. Частота вращения магнитного поля (синхронная частота) определяется по формуле:

n=60*f/p

где: f — частота тока в станах СНГ частота тока составляет 50 Гц (Герц); p — количество пар полюсов.

Чем больше полюсов у двигателя тем меньше частота его вращения. Например, расчитаем частоту вращения электродвигателя с четырьмя полюсами:

Четыре полюса — это 2 пары полюсов, соответственно:

Т.е. синхронная частота вращения магнитного поля статора 1500 об/мин, при этом частота вращения ротора при этом будет немного меньше может составлять 1400-1450 об/мин.

Относительная величина отставания вращения ротора от частоты вращения магнитного поля статора называется скольжением, она выражается в процентах и определяется по формуле:

S=(n1-n2)/n1*100%

где: n1 — синхронная частота вращения, об/мин; n2 — частота вращения ротора (асинхронная частота вращения), об/мин.

Видео с описанием устройства и принципа действия трехфазного асинхронного электродвигателя с короткозамкнутым ротором:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

Читайте также:
Твердотопливный котел своими руками - схема и чертежи + Видео

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

dvigatel asinkhronnyy trekhfaznyy

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

korotkozamknutyy rotor

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Однофазные и трёхфазные асинхронные двигатели

Асинхронные двигатели

В рубрике «Общее» рассмотрим область применения, сравнительные характеристики, преимущества и недостатки трехфазных и однофазных асинхронных двигателей. Мы рассмотрим также возможность подключения трехфазного двигателя в сеть питания 220 вольт. Асинхронные двигатели в наше время широко применяются в различных сферах промышленности и сельского хозяйства. Они используются как электропривода в металлорежущих станках, транспортёрах, подъёмно-транспортных машинах, вентиляторах, насосном оборудовании и т. д. Двигатели малой мощности применяются в устройствах автоматики. Столь широкое применение электрических асинхронных двигателей объясняется их преимуществами по сравнению с другими типами двигателей.

Асинхронные двигатели, по виду питающего напряжения, бывают однофазные и трехфазные. Однофазные в основном используются до мощности 2,2 кВт. Это ограничение по мощности связано из-за слишком больших пусковых и рабочих токов. Принцип работы однофазных асинхронных двигателей такой же, как и у трёхфазных. С единственной разницей у однофазных двигателей более низкий пусковой момент.

Принцип работы и схемы подключения трехфазных двигателей

Мы знаем, что электрический двигатель состоит из двух основных элементов статора и ротора. Статор – это неподвижная часть двигателя, а ротор является его подвижной частью. Трехфазные асинхронные двигатели имеют три обмотки, которые располагаются относительно друг друга под углом 120°.Когда на обмотки подать переменное напряжение, в статоре создается вращающееся магнитное поле. Переменным током называется: ток, который периодически изменяет свое направление в электрической цепи так, что среднее значение силы тока за период равно нулю. (Рис 1).

Переменный электрический ток

Переменный электрический ток

Фазы на рисунке изображены в виде синусоид. Вращающееся магнитное поле статора формирует вращающий магнитный поток. Так как вращающееся магнитное поле статора движется быстрее ротора, то оно под действием индукционных токов образующихся в обмотках ротора, создает магнитное поле ротора. Магнитные поля статора и ротора формируют свои магнитные потоки, эти потоки притягиваются друг к другу и создают вращающий момент, под действием которого ротор начинает вращаться. Более подробно о принципе работы трехфазных двигателей можно посмотреть здесь.

В клеммой колодке у трехфазных двигателей может быть от трех до шести клемм. На эти клеммы выведены либо начало обмоток (3 клеммы), либо начало и окончание обмоток (6 клемм). Начало обмоток принято обозначать латинскими буквами U1, V1 и W1, окончания обозначаются соответственно U2, V2 и W2. В отечественных двигателях обмотки обозначаются С1, С2, С3 и С4, С5, С6 соответственно. Кроме того в клеммой коробке могут быть еще и дополнительные клеммы на которые выводятся встраиваемая в обмотки тепловая защита. Для двигателей, которые имеют шесть клемм, существует два варианта подключения обмоток в трехфазную сеть: «звезда» и «треугольник» (Рис. 2).

Читайте также:
Чем разбавить битумную мастику

Подсоединение звезда, треугольник

Подсоединение звезда, треугольник

Подключение по схеме «звезда» (Y) можно получить, если замкнуть между собой клеммы W2, U2 и V2, а на клеммы W1, U1 и V1 подать напряжение питающей сети. При таком подсоединении ток фаз равен току сети, а напряжение фаз равно напряжению сети разделенное на корень из трех.Подключение по схеме «звезда» (Y) можно получить, если замкнуть между собой клеммы W2, U2 и V2, а на клеммы W1, U1 и V1 подать напряжение питания. При таком подсоединении ток фаз равен току сети, а напряжение фаз равно напряжению сети разделенное на корень из трех.Подключение по схеме «треугольник» (∆) можно получить, подсоединив попарно перемычками клеммы U1 – W2, V1 – U2, W1 – V2 и подать на перемычки напряжение питания. При таком подсоединении ток фаз равен току питающей сети, разделенному на корень из трех, а напряжение фаз равно напряжению сети.При помощи данных схем можно подключить трехфазный асинхронный двигатель на два напряжения. Если посмотреть на фирменную табличку трехфазного двигателя, то там указаны рабочие напряжения, при, которых работает данный электродвигатель (Рис. 3).

Фирменная табличка на трехфазном двигателе

Фирменная табличка на трехфазном двигателе

Например, 220-240/380-415: двигатель работает на напряжении 220 вольт при соединении его обмоток в «треугольник» и 380 вольт при соединении обмоток в «звезду». На более низкие напряжения, обмотки статора всегда подсоединяется в «треугольник». На более высокое напряжение обмотки подсоединяются в «звезду». Потребляемый ток при подключении двигателя в «треугольник» равен 5,9 ампер, при подключении в «звезду» ток равен 3,4 ампера. Чтобы изменить направление вращения трехфазного асинхронного двигателя достаточно поменять местами любых два провода на клеммах.

Принцип работы и схема подключения однофазных двигателей

Однофазные асинхронные электродвигатели имеют две обмотки, которые расположены под углом 90° в отношении друг к другу. Одна обмотка называется основной, а вторая – пусковой или вспомогательной. В зависимости от количества полюсов каждая обмотка может разделиться не несколько секций. Между однофазными и трехфазными двигателями существуют различия. У однофазного двигателя происходит смена полюсов при каждом цикле, а у трехфазного бегущее магнитное поле. Однофазный электродвигатель нельзя запустить в работу самостоятельно. Для его запуска используются различные способы: пуск через конденсатор и работа через обмотку, пуск через конденсатор и работа через конденсатор, с постоянной пусковой емкостью, с реостатным пуском. Наибольшее распространение нашли однофазные, эклектические двигатели, оснащенные рабочим конденсатором, постоянно подключенным и подсоединенным последовательно с пусковой (вспомогательной) обмоткой. Таким образом, пусковая обмотка становится вспомогательной, когда электродвигатель достигает рабочей частоты вращения. Как подключены обмотки в однофазном двигателе, можно посмотреть на (Рис. 4)

Схема однофазного двигателя

Схема однофазного двигателя

Для однофазных асинхронных двигателей существуют некоторые ограничения. Они ни в коем случае не должны работать при малых нагрузках и в режиме холостого хода, так как происходит перегрев двигателя. По той же причине не рекомендуется эксплуатировать двигатели при нагрузке меньше 25% от полной нагрузки.

На (Рис. 5) изображена фирменная табличка с характеристиками двигателя, который применяется в насосе фирмы Pedrollo. На ней находится вся необходимая информация о двигателе и насосе. Характеристики насоса мы рассматривать не будем.

Фирменная табличка однофазного двигателя

Фирменная табличка однофазного двигателя

Из заводской таблички видно, что это однофазный двигатель и рассчитан он на подключение в сеть с напряжением 220-230 вольт переменного тока, частотой 50 герц. Количество оборотов 2900 в минуту. Мощность этого двигателя составляет 0,75 кВт или одна лошадиная сила (НР). Номинальный потребляемый ток 4 ампера. Емкость конденсатора для данного двигателя составляет 20 микрофарад. Конденсатор должен быть с рабочим напряжением 450 вольт.

Читайте также:
Шланг для смесителя: виды, устройство, как выбрать и поменять

Преимущества и недостатки трехфазных двигателей

К преимуществам асинхронных трехфазных двигателей можно отнести:

  • низкая цена, по сравнению с коллекторными двигателями;
  • высокая надёжность;
  • простота конструкции;
  • длительный срок эксплуатации;
  • работают непосредственно от сети переменного тока.

К недостаткам асинхронных двигателей следует отнести:

  • чувствительность к изменениям питающего напряжения;
  • пусковой ток при включении в сеть довольно высок;
  • низкий коэффициент мощности, при малых нагрузках и на холостом ходу;
  • для плавной регулировки частоты вращения необходимо применять частотные преобразователи;
  • потребляет реактивную мощность, очень часто при применении асинхронных двигателей в связи с нехваткой мощности могут возникать проблемы с питающим напряжением.

Преимущества и недостатки однофазных двигателей

К преимуществам однофазных асинхронных двигателей можно отнести:

  • невысокая стоимость;
  • простота конструкции;
  • длительный срок эксплуатации;
  • высокая надежность;
  • работа от сети переменного тока 220 вольт без преобразователей;
  • низкий уровень шума по сравнению с коллекторными двигателями.

К недостаткам однофазных асинхронных двигателей следует отнести:

  • очень высокие пусковые токи;
  • большие габариты и вес;
  • ограниченный диапазон по мощности;
  • чувствительность к изменениям питающего напряжения;
  • при плавной регулировке частоты вращения необходимо применять частотные преобразователи (в продаже имеются частотные преобразователи для однофазных двигателей).
  • нельзя использовать в режимах малой нагрузки и холостого хода.

Несмотря на многочисленные недостатки и благодаря многим преимуществам асинхронные двигатели успешно работают в различных областях промышленности, сельского хозяйства и быта. Они делают жизнь современного человека более комфортной и удобной.

Трехфазный двигатель в однофазной сети

В жизни иногда бывают ситуации, когда необходимо какое-то промышленное оборудование включить в домашнюю сеть 220 вольт. И тут возникает вопрос, а можно ли это сделать? Ответ – да, хотя в этом случае неизбежны потери мощности и момента на валу двигателя. Кроме того это касается асинхронных двигателей до мощности 1-1,5 кВт. Для запуска трехфазного двигателя в однофазную сеть, надо сымитировать фазу со сдвигом на определенный угол (оптимально на 120°). Добиться этого сдвига можно, если использовать фазосдвигающий элемент. Наиболее подходящим элементом является конденсатор. На (Рис. 6) приведены схемы включения трехфазного двигателя в однофазную сеть при подсоединении обмоток в «звезду» и «треугольник»

Схемы включения двигателя

Схемы включения двигателя

При запуске двигателя требуется усилие, чтобы преодолеть силы инерции и трения покоя. Для увеличения момента вращения, нужно установить дополнительный конденсатор, подсоединяемый к основной схеме только в момент запуска, а после запуска его нужно отключить. В этих целях лучшим вариантом будет применение замыкающейся кнопки SA без фиксации положения. На кнопку следует нажать в момент подачи напряжения питания, и пусковая емкость Сп. создаст дополнительной сдвиг фазы. Когда двигатель раскрутится до номинальных оборотов, кнопку нужно отпустить, и в схеме будет использоваться только рабочий конденсатор Сраб.

Расчет величины емкости

Емкость конденсатора можно определить методом подбора, начиная с небольшой емкости и постепенно переходить к более большим емкостям, до получения подходящего варианта. А когда еще есть возможность измерить ток (наиболее низкое его значение) в сети и на рабочем конденсаторе, то можно подобрать наиболее оптимальную емкость. Замер тока нужно проводить при работающем двигателе. Пусковая емкость рассчитывается исходя из требования по созданию достаточного пускового момента. Но этот процесс довольно длительный и трудоемкий. На практике часто пользуются боле быстрым способом. Есть простой способ вычисления емкости, правда эта формула дает скорее порядок цифр, но не ее значение. И повозиться в этом случае тоже придется.

Сраб — рабочая емкость конденсатора в мкФ;

Рн — номинальная мощность двигателя кВт.

Данная формула действительна при подключении обмоток трехфазного двигателя в «треугольник». Исходя из формулы на каждые 100 Вт мощности трехфазного двигателя, потребуется емкость порядка 7 мкФ.

Читайте также:
Умывальник с водонагревателем для дачи своими руками

Если емкость конденсатора подобрана больше, чем необходимо, двигатель будет перегреваться, а если же емкость будет меньше, то мощность двигателя будет занижена.

В некоторых случаях помимо рабочей емкости Сраб. используется и пусковой конденсатор Сп. Емкость обеих конденсаторов нужно знать, иначе двигатель работать не будет. Сначала определим значение емкости, необходимой для того, чтобы заставить ротор вращаться. При параллельном включении емкость Сраб и Сп. складываются. Нам также потребуется значение номинального тока Iн. Данную информацию мы можем посмотреть на фирменной табличке, прикрепленной к двигателю.

Расчет емкости конденсатора производится в зависимости от схемы подключения трехфазного двигателя. При подсоединении обмоток двигателя в «звезду» расчет емкости проводится по следующей формуле:

В случае соединения обмотки двигателя в «треугольник», рабочая емкость рассчитывается так:

Сраб — рабочая емкость конденсатора в мкФ;

I – номинальный ток в амперах;

U – напряжение в вольтах.

Емкость дополнительного пускового конденсатора должна быть в 2 – 3 раза больше чем емкость рабочего. Если, к примеру, емкость рабочего конденсатора равна 70 мкФ, то пусковая емкость конденсатора должна быть 70-140 мкФ. Что в сумме составит 140-210 мкФ.

Для трехфазных двигателей мощностью до 1 (кВт) достаточно только рабочего конденсатора Сраб, дополнительный конденсатор Сп можно не подключать. При подборе конденсатора для трехфазного двигателя, включенного в однофазную сеть важно правильно учесть его рабочее напряжение. Рабочее напряжение конденсатора должно быть не менее 300 Вольт. Если конденсатор будет иметь рабочее напряжение больше, в принципе ничего плохого не произойдет, но при этом увеличиваются его габариты, и, конечно же, цена. Если конденсатор выбрать с рабочим напряжением меньше чем требуется, то конденсатор очень быстро выйдет из строя и может даже взорваться. Очень часто бывают такие ситуации, когда в наличии нет конденсатора необходимой емкости. Тогда необходимо подключить несколько конденсаторов параллельно или последовательно, чтобы получить требуемую емкость. Нужно помнить, что при параллельном подключении нескольких конденсаторов, общая емкость складывается, а при последовательном соединении общая емкость уменьшается исходя из формулы: 1/С=1/С1+1/С2+1/С3… и так далее. Также следует не забывать о рабочем напряжении конденсатора. Напряжение на всех подключаемых емкостях параллельно должно быть не ниже номинального. А напряжение на подключаемых емкостях последовательно, на каждом из конденсаторов может быть меньше номинального, но общая сумма напряжений должна бить не ниже номинального. Приведу пример, есть два конденсатора емкостью 60 мкФ с рабочим напряжением 150 вольт каждый. При подсоединении их последовательно, общая их емкость составит 30 мкФ (уменьшится), а рабочее напряжение увеличится до 300 вольт. На этом, пожалуй, все.

Спасибо за проявленный интерес.

P.S. Понравился пост? Порекомендуйте его своим друзьям и знакомым в социальных сетях.

Обзор конструкции

Три основные составляющие двигателя – ротор, статор и корпус. Кожух обеспечивает защитные функции, предупреждает повреждения на статоре и роторе. Также позволяет закрепить подвижную, стационарную часть асинхронной машины.

Статор размещен неподвижно в двигателе, содержит станину и магнитопровод. Под воздействием пресса магнитный проводник фиксируется к станине и формирует электромагнитное ядро. Магнитное поле, создаваемое в ядре, беспрерывно вращается. Тонкие листы магнитопровода выполнены из электротехнической листовой стали, крепление пластин способствует образованию пазов и зубцов статора. Шихтованный сердечник, выступающий дополнительным элементом статора, также создан из статорных пластин. Листы сердечника соединяются сваркой, прессом и кольцевыми шпонками – аналогично образован магнитопровод.

Обмотка ротора представлена короткозамкнутыми кольцами, внешне напоминающими колеса беличьих клеток. Включает латунные или медные стержни, приваренные к короткозамкнутым кольцам на торцах. Кольца вбиты в пазы. Статор и ротор разделен воздушной прослойкой.

Обмотка двигателей с фазным ротором в начале изолирована, концы припаяны к контактным кольцам, позволяющим подключить пуско-регулирующий реостат. Цепь ротора получает дополнительное сопротивление, дает возможность регулировать частоту вращения и уменьшения пусковых токов.

Строение асинхронного двигателя

Способы торможения двигателей

При торможении противовключением меняются два провода соединяющих трехфазную сеть с обмотками статора, изменяя при этом направление движения магнитного поля машины. При этом наступает режим электромагнитного тормоза. Для динамического торможения обмотка статора отключается от трехфазной сети и включается в сеть постоянного тока. Неподвижное поле статора заставляет ротор быстро останавливаться.

Для лучшего понимания механизмов торможения двигателей рекомендуем также подробнее прочитать все что нужно знать о шаговых электродвигателях.

После отключения от сети электродвигатель продолжает движение по инерции. При этом кинетическая энергия расходуется на преодоление всех видов сопротивлений движению. Поэтому скорость электродвигателя через промежуток времени, в течение которого будет израсходована вся кинетическая энергия, становится равной нулю.

Читайте также:
Твердотопливный котел своими руками - схема и чертежи + Видео

Такая остановка электродвигателя при движении по инерции называется свободным выбегом. Многие электродвигатели, работающие в продолжительном режиме или со значительными нагрузками, останавливают путем свободного выбега.

Реле контроля напряжения фаз

Что такое трехфазный двигатель и как он работает

Для защиты двигателей от пропадания и перекоса (разницы напряжений) фаз питающего напряжения применяют реле контроля фаз, которые в этих случаях полностью отключают питание (с автоматическим или ручным дальнейшим включением). Возможна установка одного реле на группу двигателей.

Более грубой и универсальной защитой, обязательной по правилам эксплуатации и обычно достаточной при правильно подобранных параметрах, является установка трёхфазных автоматических выключателей (по одному на двигатель), которые отключают питание в случае длительного (до несколько минут) превышения номинального тока по любой из фаз, что является следствием перегрузки двигателя, перекоса или обрыва фаз.

Поэтому, если бы ротор вращался с той же частотой, что и поле, то никакого относительного движения их не было бы. Тогда ротор находился бы в покое относительно поля и в нем не возникала бы никакая индуцированная э. д. с., то есть в роторе не было бы тока и не могли бы возникнуть, силы, приводящие его во вращение. Отсюда ясно, что двигатель описываемого типа может работать только при частоте вращения ротора, несколько отличающейся от частоты вращения поля, то есть от частоты тока.

Изменение частоты вращения ротора

Параллельные обмотки двух фаз образуют одну пару полюсов сдвинутые в пространстве на 120 градусов. Последовательное соединение обмоток образует две пары полюсов, что дает возможность уменьшить скорость вращения в два раза. Для регулирования скорости вращения ротора изменением частоты тока используют отдельный источник тока или преобразователь энергии с регулируемой частотой, выполненный на тиристорах.

Двигатель развивает в момент пуска довольно значительный вращающий момент, и так как инерция его сравнительно невелика, то частота вращения ротора быстро нарастает и почти сравнивается с частотой вращения поля, так что относительная частота их становится почти равной нулю и ток в роторе быстро спадает.

Для двигателей малой и средней мощности кратковременная перегрузка их при пуске не представляет опасности, при запуске же очень мощных двигателей (десятки и сотни киловатт) применяются специальные пусковые реостаты, ослабляющие ток в обмотке; по мере достижения нормальной частоты вращения ротора эти реостаты постепенно выключают.

По мере того, как возрастает нагрузка двигателя, частота вращения ротора несколько уменьшается, частота вращения поля относительно ротора возрастает, и вместе с тем растут ток в роторе и развиваемый двигателем вращающий момент.

Однако для изменения мощности двигателя от нуля до нормального значения требуется очень небольшое изменение частоты вращения ротора, примерно до 6 % от максимального значения. Таким образом, асинхронный трехфазный двигатель сохраняет почти постоянную частоту вращения ротора при очень широких колебаниях нагрузки.

Регулировать эту частоту в принципе возможно, но соответствующие устройства сложны и неэкономичны и потому на практике применяются очень редко. Если машины, приводимые в действие двигателем, требуют иной частоты вращения, чем этот двигатель дает, то предпочитают применять зубчатые или ременные передачи с различными передаточными числами.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: